top of page


Mr. John Smith

Job title



The complex eigenvalue analysis is one of the most effective approaches to predict squeal instability and this analysis is becoming more popular due to the progress of computers recently. In order to evaluate the brake squeal instability, friction characteristics can be a key parameter because unstable frequency range and instability are dependent on the friction coefficient level. Dynamic friction surface pressure on the friction when the brake is applied is not measureable, however it can be estimated based on the pad wear condition after some mileage accumulation. As a result of pad wear investigation, the dynamic friction surface pressure was calculated and it corresponded to pad wear profile. Typical dynamic pressure distribution was assumed that the leading side pressure was higher than the trailing side for the inner pad. We applied these dynamic surface pressures to determine the spring constant in the new FEM structural model for complex eigenvalue analysis. In order to confirm the effectiveness for this analysis, we compared two different eigenvalue analyses, namely constant pressure distribution and dynamic pressure distribution based on wear investigation, as well as noise test results. According to the comparison between the two complex eigenvalue analyses and noise test results, we confirmed significant benefits by using realistic dynamic pressure distribution on the friction surface.

Koichi Nakamura, Yasushi Suganuma; - Honda R&D Co.,Ltd.

Effects Of Brake Friction Contact On Disk Brake Squeal Noise Analysis

EB2013-NVH-016 • Paper • EuroBrake 2013 • Brake Noise Test and Reduction Methods (NVH)


Sign up or login to the ICC to download this item and access the entire FISITA library.

Upgrade your ICC subscription to access all Library items.

Congratulations! Your ICC subscription gives you complete access to the FISITA Library.


Retrieving info...

Available for purchase on the FISITA Store


bottom of page