top of page

Country

Mr. John Smith

Job title

Company

People

Learn more about techniques, applications and research challenges of uncertainty quantification which play a central role in reducing the impact of uncertainty in both optimisation and decision-making processes.


Examine how the problem of reconstructing a high-resolution colour image from burst of low-resolution raw pictures can addressed with a hybrid algorithm that retains the interpretability of the Lucas-Kanade approach to image alignment and iterative solutions to inverse problems but can be implemented in a feed-forward neural network, with parameters learned end to end.


And find out how Neuromorphic Computing can address the need for low power devices that are capable of advanced intelligence while reducing the number of specialized silicon chips and integration complexity.



Christophe Aufrère, Faurecia; Andreea Danielescu, Accenture Labs; Eric Moulines, Centre for Applied Mathematics at Ecole Polytechnique; Jean Ponce, Inria (National Institute for Research in Digital Science and Technology); Tim Shea, Intel

AI & Hybridisation Techniques

FTD2022-03-01 • Video • FISITA Technology Discussion March 2022

DOWNLOAD PAPER PDF
DOWNLOAD POSTER PDF
DOWNLOAD SLIDES PDF

Sign up or login to the ICC to download this item and access the entire FISITA library.

Upgrade your ICC subscription to access all Library items.

Congratulations! Your ICC subscription gives you complete access to the FISITA Library.

BUY NOW

Retrieving info...

Available for purchase on the FISITA Store

OR

bottom of page