top of page

Mercedes-Benz

Mercedes-Benz

Germany

Non-Member

Mercedes-Benz AG is responsible for the global business of Mercedes-Benz Cars and Mercedes-Benz Vans with over 173,000 employees worldwide. Ola Källenius is Chairman of the Board of Management of Mercedes-Benz AG. The company focuses on the development, production and sales of passenger cars, vans and services. Furthermore, the company aspires to be leading in the fields of connectivity, automated driving and alternative drives with its forward-looking innovations. The product portfolio comprises the Mercedes-Benz brand with the sub-brands Mercedes-AMG, Mercedes-Maybach and Mercedes me - as well as the smart brand, and the EQ product and technology brand for electric mobility.


Mercedes-Benz AG is one of the largest manufacturers of premium passenger cars. In 2019 it sold nearly 2.4 million cars and more than 438,000 vans. In its two business divisions, Mercedes-Benz AG is continually expanding its worldwide production network with over 40 production sites on four continents, while aligning itself to meet the requirements of electric mobility. At the same time, the company is developing its global battery production network on three continents. Sustainable actions play a decisive role in both business divisions.


To the company, sustainability means creating value for all stakeholders on a lasting basis: customers, employees, investors, business partners and the society as a whole. The basis for this is the sustainable business strategy of Daimler in which the company takes responsibility for the economic, ecological and social effects of its business activities and looks at the entire value chain.

SEE MORE

Representative

SEE MORE

Stay up to date with FISITA Spotlight

More Blogs Item Title

Excerpt from the blog goes here - this will give the reader a brief snapshot of what the post is about...

16 July 2021

READ NOW

See FISITA Library items from Mercedes-Benz

F2020-ADM-087

Paper + Video

Prof. Federico Millo, Politecnico di Torino, ITALY
Dr. Luciano Rolando, Politecnico di Torino, ITALY
Dr.-Ing. Luca Pulvirenti, Politecnico di Torino, ITALY

Detail

Fuel economy of Hybrid Electric Vehicles (HEVs) may be further improved by exploiting the increased connectivity level of next -generation vehicles. Minimization of HEVs fuel consumption is a global problem and its optimal solution inevitably entails the complete knowledge of the driving conditions. Hence, optimality can only be reached on a limited number of a priori known mission profiles, and never on real driving test cases . Thus, the capabilities of conventional Energy Management Systems (EMS) can be strongly enhanced by integrating the prediction of future vehicle speed into the powertrain control strategy. Vehicle-to-Everything (V2X) technology adoption paves the way for reliable future driving conditions forecasting. As a result, in this paper information derived from V2X connectivity was used to develop an innovative adaptation algorithm for an Equivalent Consumption Minimization Strategy (ECMS). Traffic information and driving style identification were employed to predict future driving conditions and, in turn, to adapt the equivalence factor. Hence, some innovative correction parameters were introduced in the equivalence factor formulation, in order to periodically adapt it according to the predicted vehicle speed. The continuous equivalence factor optimization was aimed at ensuring enhanced fuel economy and at guaranteeing charge sustainability. The potential of this innovative Adaptive ECMS (A-ECMS) was assessed on a P2 architecture test case by means of numerical simulation. The reliability of the simulation platform had been preliminarily validated by comparing simulation results with experimental data. The experimental measurements were obtained by testing a Mercedes-Benz E 300 de on real-world driving scenarios. The simulation results proved that the proposed approach is able to significantly improve the strategy adaptability and its fuel economy potential if compared with the conventional EMS taken as reference. Fuel consumption reductions up to 10 % were demonstrated, depending on the vehicle mission profile. Finally, a sensitivity analysis was performed in order to assess how different prediction horizons affect the adaptive algorithm.

FISITA World Congress 2021

ADM - Advanced Vehicle Driveline and Energy Management

WATCH VIDEO
DOWNLOAD PDF
DOWNLOAD SLIDES

Downloads

Energy Management System Optimization Based on V2X Connectivity, F2020-ADM-087, FISITA World Congress 2021

EB2021-STP-011

Paper + Video + Slides

Detail

Dipl.-Ing. Severin Huemer-Kals, TU Graz, AUSTRIA

Prof. Jurij Prezelj, University of Ljubljana, SLOVENIA

Mr. Máté Tóth, TU Graz, AUSTRIA

Dipl.-Ing. Dominik Angerer, TU Graz, AUSTRIA

Dipl.-Ing. Manuel Pürscher, TU Graz, AUSTRIA

Mr. Federico Coren, TU Graz, AUSTRIA

Mr. Martin Zacharczuk, Mercedes-Benz AG, GERMANY


The nature of friction within a vehicle’s disk brake system can cause a wide range of different noise phenomena. Especially high-frequency brake squeal was examined during the last decades. Numerous publications treat squeal phenomenology and its mitigation. Increasing shares of electrified powertrains, automatic driving functions such as park assists and further increasing quality demands have now shifted the research interest more and more towards low-frequency phenomena.

One of these low-frequency phenomena is creep groan. Defined by its main frequency below 200 Hz, creep groan is characterized by a highly non-linear behavior: Global stick-slip transitions in the disk/pad contacts repeatedly excite the whole brake and axle system. Different bifurcations or even chaotic behavior occur.

To ensure good creep groan behavior, defined assessment procedures and rating criteria are necessary. Currently, the German Association of the Automotive Industry recommends a combined rating via the subjective perception of trained test drivers and the objective, A-weighted sound pressure level. This practice could be improved with a more sophisticated objective rating: By considering the human perception, objective and subjective ratings would correlate even better.

One possible approach towards an enhanced objective creep groan rating could therefore use psychoacoustic metrics. In 2009, this idea was formulated for the psychoacoustic loudness and the tonality of creep groan by Abdelhamid and Bray.

The present work seizes this suggestion and provides additional psychoacoustic evaluations of full-vehicle creep groan signals. Based on measured accelerometer signals, a novel procedure for the psychoacoustic evaluation of structure-borne noise was applied: Optimized FIR filter transfer functions were used to compute equivalent sound pressure signals from the accelerometer data, with the equivalent signals resembling the measured signals but lacking unwanted noise. Both the measured and the simulated signal were then evaluated and compared regarding their psychoacoustic behavior.

Results reveal the value of the equivalent sound pressure signal: Whereas loudness and sharpness were found very similar and tonality rather arbitrary for both measured and equivalent sound pressure signal, roughness and fluctuation strength showed strong differences between the signals: Here, only the accelerometer-based, equivalent sound pressure provided easily interpretable characteristics. The proposed method also compared psychoacoustic characteristics for different creep groan bifurcations.

Possible applications comprise an enhanced objective rating of low-frequency noise phenomena, the detection and classification of creep groan bifurcations, or the possibility to estimate creep groan cabin noise based on simulative results during early development stages. Therefore, this study provides another step towards silent automotive brake technology.

EuroBrake 2021

NVHV

WATCH VIDEO
DOWNLOAD PDF
DOWNLOAD SLIDES

Downloads

The Psychoacoustic Characteristics of Non-Linear Automotive Disk Brake Creep Groan: a Method Based on Accelerometer Data, EB2021-STP-011, EuroBrake 2021
LOAD MORE

Error message goes here.

SEARCH

Germany

Head of Accident Research, Concepts, Child Safety, Sensor Functions & Systems Integral Safety

SEARCH
LOAD MORE

Message goes here.

See people from Mercedes-Benz

bottom of page